Handedness inside the proton

Daniël Boer Free University, Amsterdam

Questions to be addressed:

Is there nonzero transversity of quarks inside *unpolarized* hadrons? How would one be able to find this out?

The transverse polarization of a noncollinear quark inside an unpolarized hadron in principle can have a preferred direction

This preferred direction signals an intrinsic handedness Why? For instance, in the infinite momentum frame:

$$S_T^q \sim P_{\mathsf{hadron}} \times p_{\mathsf{quark}}$$

Obviously related to orbital angular momentum, but how exactly is still an open question

T-odd distribution functions

Such handedness appears to violate time reversal invariance It is described by a T-odd distribution function, which was thought to be absent if the incoming hadron is treated as a plane-wave state

Recent work by Brodsky, Hwang, Schmidt, PLB 530 (2002) 99; Collins, PLB 536 (2002) 43; Ji, Yuan, hep-ph/0206057; Belitsky, Ji, Yuan, hep-ph/0208038 shows otherwise

Two leading twist (unsuppressed) T-odd distribution functions with transverse momentum dependence are possible

$$f_{1T}^{\perp} = k_{T} \qquad h_{1}^{\perp} = k_{T} \qquad k_{$$

 $f_{1T}^{\perp}\leftrightarrow {\sf Sivers}$ effect (Sivers, PRD 41 (1990) 83; 43 (1991) 261) h_1^{\perp} signals an intrinsic handedness

$$h_1^{\perp} \neq 0 \leftrightarrow \operatorname{\mathsf{Prob}}\left[q({m k}_T, {m s}_T) \operatorname{\mathsf{in}} P\right] \neq \operatorname{\mathsf{Prob}}\left[q({m k}_T, -{m s}_T) \operatorname{\mathsf{in}} P\right]$$

Its phenomenology was presented in D.B. & Mulders, PRD 57 (1998) 5780 and D.B., PRD 60 (1999) 014012 & NPB (PS) 79 (1999) 638

The unpolarized Drell-Yan process

There exists data compatible with nonzero h_1^\perp

Data from: NA10 Collab. ('86/'88); E615 Collab. at Fermilab ('89) $\pi^- N \to \mu^+ \mu^- X$, with N=D,W and π -beams of 140-286 GeV

$$\frac{1}{\sigma} \frac{d\sigma}{d\Omega} \propto \left(1 + \lambda \cos^2 \theta + \mu \sin^2 \theta \cos \phi + \frac{\nu}{2} \sin^2 \theta \cos 2\phi \right)$$

Perturbative QCD prediction (NLO): $\lambda \approx 1$, $\mu \approx 0$, $\nu \approx 0$

Data: large ν !

The unpolarized Drell-Yan process

The function h_1^{\perp} can provide an explanation for this large $\cos 2\phi$

Brandenburg, Nachtmann & Mirkes (ZPC 60 (1993) 697): large ν arises from a factorization breaking correlation between π and N

Observation: $\nu \propto h_1^\perp(\pi)\,h_1^\perp(N)$ [D.B., PRD 60 (1999) 014012] Use the data to fit the function h_1^\perp

No factorization breaking and offers a natural explanation for $\mu \approx 0$

The polarized Drell-Yan process

In the case of one polarized hadron (choosing $\mu=0$ and $\lambda=1$):

$$\frac{d\sigma}{d\Omega \; d\phi_S} \propto 1 + \cos^2\theta + \sin^2\theta \left[\frac{\nu}{2} \; \cos 2\phi - \rho \; |\boldsymbol{S}_{1T}| \; \sin(\phi + \phi_S) \right] + \dots$$

Relation for the case of one flavor:

$$\rho = \frac{1}{2} \sqrt{\frac{\nu}{\nu_{\text{max}}}} \, \frac{h_1}{f_1}$$

Yields as crude predictions

Different angular dependence compared to the Sivers asymmetry

$$(1 + \cos^2 \theta) |S_T| \sin(\phi - \phi_S) f_{1T}^{\perp} f_1$$

Further remarks

Possible future DY data

RHIC: $\langle \cos 2\phi \rangle$ in unpolarized $p p \to \mu^+ \mu^- X$ and the single spin asymmetry $\langle \sin(\phi + \phi_S) \rangle$, which is proportional to $h_1 h_1^{\perp}$

Fermilab: $\langle \cos 2\phi \rangle$ in $p \bar{p} \to \mu^+ \mu^- X$ probably yields larger results

Semi-inclusive DIS

The $\langle\cos2\phi\rangle$ in SIDIS seems to be smaller than the $\langle\cos2\phi\rangle$ in DY, but also smaller than the $\langle\cos\phi\rangle$ indicating that hard gluon radiation could be the explanation in SIDIS

In the present picture the $\langle\cos2\phi\rangle$ in SIDIS would be $\propto h_1^\perp H_1^\perp$, hence this could be a sign that the magnitude of H_1^\perp is smaller than that of h_1^\perp

Testable by comparing to $\langle \cos 2\phi \rangle$ in e^+e^- annihilation (BELLE, BABAR)

Another test would be to look at $\langle \cos 2\phi \rangle$ for a jet instead of a hadron, $e \, p \to e' \, \mathrm{jet} \, X$; h_1^\perp should then not contribute

SSA in hadron-hadron collisions

Single spin asymmetries in $p+p^{\uparrow} \rightarrow \pi + X$

These can arise from leading twist T-odd functions with transverse momentum dependence in three different ways:

- Distribution functions: $f_{1T}^{\perp}(x_1, \boldsymbol{p}_T) \otimes f_1(x_2) \otimes D_1(z)$ $h_1^{\perp}(x_1, \boldsymbol{p}_T) \otimes h_1(x_2) \otimes D_1(z)$
- Fragmentation functions: $h_1(x_1)\otimes f_1(x_2)\otimes H_1^\perp(z, {\pmb k}_T)$

Options 1 & 3 investigated by Anselmino, Boglione & Murgia (PLB 362 (95) 164 & PRD 60 (99) 054027)

The Collins effect, $H_1^{\perp}(z, \mathbf{k}_T)$, is expected to be present in quark fragmentation, but its magnitude is in principle unrelated to $h_1^{\perp}(x_1, \mathbf{p}_T)$

Options 1 & 2 also occur in $p+p^{\uparrow} \rightarrow \mathsf{jet} + X$

Polarized Λ production in SIDIS

Polarized Λ production in semi-inclusive DIS

The intrinsic handedness can also lead to the following asymmetries:

- $\bullet \, \sin(\phi_{\Lambda}^e + \phi_{S_T^{\Lambda}}^e)$ asymmetry in $e \, p o e' \Lambda^{\uparrow} X$
- $ullet \sin(2\phi_{\Lambda}^e)$ asymmetry in $e\, p o e' ec\Lambda X$

These distinct angular dependences should be absent for charged current exchange processes, like $\nu\,p\to e\Lambda^\uparrow X$ or $\nu\,p\to e\vec\Lambda X$ D.B., Jakob & Mulders, NPB 564 (2000) 471

Distinguishable from other mechanisms via y or ϕ^e dependence E.g. the polarizing fragmentation functions in SIDIS Anselmino, D.B., D'Alesio & Murgia, PRD 65 (2002) 114014

Moreover, it should vanish after integration over Q_T , leaving only a $\sin(\phi^e_{S^\Lambda_T})$ asymmetry (twist-3)

Conclusions

Leading twist T-odd distribution functions with transverse momentum dependence can offer viable explanations of certain azimuthal asymmetries

The intrinsic handedness function h_1^{\perp} can explain:

- ullet the $\cos 2\phi$ asymmetry in unpolarized Drell-Yan
- ullet single spin asymmetries in $p+p^{\uparrow}
 ightarrow \pi + X$

Furthermore, it can generate

- $\sin(\phi + \phi_S)$ in $p p^{\uparrow} \to \mu^+ \mu^- X$
- $\bullet \cos 2\phi$ in $e p \to e' \pi X$, but not $e p \to e'$ jet X
- $\bullet \sin(\phi_{\Lambda}^e + \phi_{S_{\mathcal{T}}^{\Lambda}}^e) \text{ in } e p \to e' \Lambda^{\uparrow} X \text{ (NC, but not CC)}$
- $\sin(2\phi_{\Lambda}^e)$ in $ep \to e'\vec{\Lambda}X$ (NC, but not CC)

There are several ways of differentiating between mechanisms

Testable (in principle) using a host of existing (Fermilab, BELLE, ...) and future data (RHIC, COMPASS, HERMES, ...)

